IGCSE(9-1) Physics Model Paper-1 Mark Scheme www.tutorfor.co

Q1.

Question number	Answer	Notes	Mark
(a) (i)	substitution; evaluation;	allow use of g = 9.8, 9.81 -1 for POT error but only from incorrectly converting kg to g 119.7 scores 0	2
	e.g.		
	GPE = 19 × 10 × 6.3 GPE = 1200 (J)	allow 1197, 1170, 1173, 1173.1, 1173.06, 1174, 1174.3, 1174.26, 1174.257 (J)	
(ii)	same value as answer to (i);	allow ecf from (i)	1
(b)	use of weight = mass × g; evaluation;	allow use of g = 9.8, 9.81	2
	e.g. weight = mass × g (air resistance = 19 × 10 =) 190 (N)	allow 186, 186.2, 186.4, 186.39 (N)	
(c)	A kinetic; B thermal; D by radiation;		3

Q2.

Question number	Answer	Notes	Mark
(a)	ammeter and voltmeter symbols correct; ammeter in series with resistor; voltmeter in parallel with resistor;		3
(b) (i)	voltage = current × resistance;	allow standard symbols and rearrangements e.g. R = V ÷ I ignore c, C for current	1
(ii)	substitution;	ignore units until evaluation	3
	rearrangement; evaluation;	-1 POT error	
	correct answer = 130 (Ω)		
	e.g. 0.92 = 7.3 (×10 ⁻³) × resistance resistance = 0.92 ÷ 7.3 (×10 ⁻³)		
	(resistance =) 130 (Ω)	allow 126, 126.0 (Ω)	

Q3.

Questio		Answer	Notes	Marks
(a)	(i)	pressure difference = height × density × g;	allow in words or standard symbols e.g. $p = h \times \rho \times g$ condone d for density	1
	(ii)	substitution;		3
	62.182	evaluation of pressure difference in kPa;	allow 343 (kPa) for use of g=9.8 N/kg	
		evaluation of total pressure by adding 100 (kPa);	ECF candidate's water pressure allow 443 (kPa) for use of g=9.8(1) N/kg allow 450 000 Pa with clear intent from candidate i.e. removal of 'k' from unit on answer line. -1 for POT error but not if due to physics error such as missing g, substitution of 100 (kPa) for g	
		e.g.	11000 Au 5.1	
		(pressure difference =) 35 × 1000 × 10 (pressure difference =) 350 (kPa) (pressure = 350 + 100 =) 450 (kPa)		
			350 kPa gets 2 marks 350 100 kPa gets 2 marks unqualified 350 000 (kPa) gets 1 mark	

(b) (i)	pressure = force ÷ area;	allow in words or standard symbols e.g. p = F / A	1
(ii)	substitution; rearrangement;	condone pressure in Pa or kPa	4
	evaluation;	accept standard form i.e. $1.7 \times 10^{-3} \text{ (m}^2\text{)}$	
	corresponding unit of area; e.g.		
	260 000 = 430 / area (area =) 430 / 260 000 (area =) 0.0017 m ²	allow 0.0016538 m ² etc allow 17, 16.5 (cm ²) etc allow 1.65 m ² scores 3 allow 1.65cm ² scores 2	
(c)	pressure (at bottom) is greater than before / eq; wider base /eq;	allow stronger material/eq ignore taller	2

Q4.

Question number	Answer		Notes	Marks
(a)	B (); A is incorrect because it is an LED C is incorrect because it is a motor D is incorrect because it is an LDR		•	1
(b)	one mark for each correctly ticked sta		if 3 or more ticks, then	2
	Statements	Correct (/)	ii o oi more cicio, cien	
	Visible light is a longitudinal wave	Correct (V)	-1 for each incorrectly ticked row	
		Correct (🗸)	-1 for each incorrectly	
	visible light is a longitudinal wave	300	-1 for each incorrectly	
	visible light is a longitudinal wave visible light transfers energy	300	-1 for each incorrectly	

(c) (i)	normal line drawn correctly at mirror surface;	ignore tangent lines does not need to be labelled but should be drawn at 90° by eye where the ray meets the mirror	1
(ii	ray drawn reflecting; angle of reflection correct; e.g. incident ray	reject if ray passes into the mirror DOP judge by eye allow ecf from (c)(i)	2
(d) (i)	rearrangement; evaluation; e.g. 120 = current × (3×)1.5 × 3.0(×60) current = 120 / 4.5 × 180 (current =) 0.15 (A)	allow if 1.5 V used for voltage ignore unit for time allow substitution into P=VI and P=E/t 26.6, 8.8, 0.44 = 2 marks	3
(ii	idea that current in wire produces a magnetic field;	ignore wire becomes magnetic	1

Total for Question = 10 marks

Question number	Answer	Notes	Marks
(a) (i)	GPE = mass \times g \times height;	allow standard symbols and rearrangements e.g. GPE = m × g × h	1
(ii)	substitution;	allow use of g = 9.8, 9.81	2
	evaluation;	-1 for clear POT error	
	e.g. (GPE =) 0.52 × 10 × 0.82		
	(GPE =) 4.3 (J)	allow 4.2, 4.26, 4.264, 4.17872, 4.18	
(iii)	identical answer to (ii);	allow ecf from (ii) expect 4.3 (J)	1
(iv)	selection of KE = ½ × mass × speed ² ; substitution; rearrangement; evaluation;	seen or implied allow ecf from (iii)	4
		allow alternative method using v² = u² + 2as	
	e.g. $KE = \frac{1}{2} \times m \times v^2$		
	$4.3 = \frac{1}{2} \times 0.52 \times v^2$ $v = \sqrt{2 \times 4.3 / 0.52}$		
	(v =) 4.1 (m/s)	allow 4.0-4.1 (m/s)	
(b)	any three from:		3
	MP1. oil is more dense / viscous (than air); MP2. force of friction now present / greater (than before);	allow oil is thicker allow drag, fluid/liquid resistance for friction allow upthrust is greater ignore resistance	
	MP3. ball now does work against friction; MP4. decrease in GPE same as before;	ignore resistance	
	MP5. idea that energy is conserved;		
	MP6. some energy transferred to thermal store (of air/ball);		
	MP7. means less energy transferred to KE;		

Q6.

Question number	Answer	Notes	Mark
(a)	idea of a current (in the coil);	ignore references to electromagnets	1
(b) (i)	d.c. travels in one direction only; idea of a.c. continuously changing direction;	allow keeps changing direction, changes direction constantly etc.	2
(ii)	idea of changing magnetic field (from transmitter coil); idea of gold ring cutting field lines; idea of induced voltage for gold ring;	allow field moving through ring ignore ring interacting with field ignore induced current	3
(c)	any four from: MP1. alternating current in loudspeaker; MP2. magnetic fields interact (in loudspeaker); MP3. causing a force (on loudspeaker cone); MP4. a.c. causes changing force direction; MP5. loudspeaker (cone) vibrates;	ignore fields cutting allow coil for cone allow coil for cone allow description of vibrations e.g. "back and forth"	4

Q7.

Els from: Alls further apart; Wer collisions between particles and walls It second/lower frequency of collisions; Peans (average) force on walls lower; Wer force means lower pressure for same all surface area; It ion into given equation "p1 × V1 = p2 × V2"; Pement to give p2; Ion of p2;	reject unqualified 'fewer collisions' accept idea that force per collision is the same ignore references to particles colliding with each other accept	3
ement to give p ₂ ;	accept	3
ement to give p ₂ ;		3
$0 = p_2 \times 140$ $\times 110 / 140$ 00 (Pa)	allow 79357.1 (Pa), 79(.4) kPa , standard form	
E from: essure outside balloon is lower than inside lloon; essure difference causes a force; rce is outwards on balloon; rce causes extension of balloon;	accept 'stretching'	3
2	E from: essure outside balloon is lower than inside cloon; essure difference causes a force; ce is outwards on balloon;	E from: essure outside balloon is lower than inside cloon; essure difference causes a force; ce is outwards on balloon;

Q8.

uestion umber	Answer	Notes	Marks
(a) (i)	recall of (unbalanced) force = mass × acceleration;	allow symbols can be implied from valid substitution of data	3
	substitution and rearrangement; evaluation to 2 s.f. or more;		
	e.g.		
	F = m × a		
	a = 41000 / 830	allow 49.39	
	$a = 49 \text{ (m/s}^2)$	allow 49.39	
(ii)	substitution into v ² = u ² + 2as; rearrangement;	allow ecf from (i)	3
	evaluation;		
	e.g.		
	$26^2 = 72^2 + 2 \times (-50) \times s$		
	(distance =) 5184-676 / 100		
	(distance =) 45 (m)	expect answers in range 45-46 (m)	
		reject 72-26 = 46	
		(wrong physics)	
4		accept 46 if unqualified	
(b)	kinetic energy (store) of car decreases;	kinetic energy/ KE of car	3
	thermal energy (store) of brake(s) increases;	transforms to	
	thermat energy (store) or pract(s) increases,	{heat/thermal} energy of brakes	
	energy transferred mechanically;	due to work done by {friction / brakes}	
		NB only award from either the answer	
		column or notes	
		column, not from a mix	
		of the two.	
(c)	any two from:		2
(6)	MP1. idea that insulating materials are poor conductors;		2
	MP2. layers trap air; MP3. air itself is a poor conductor/(good) insulator		
	MP4. (energy transfer due to / rate of)	condone idea of	
	conduction reduces;	stopping conduction	
	MP5. idea increased thickness reduces (rate of) conduction		
		Total for Question = 11	marks

Q9.

Question number	Answer	Notes	Mark
(a)	use of u=0 (m/s); correct substitution into 'v² = u² + 2aS'; correct evaluation of v²; correct evaluation of v;	accept loss of GPE = gain in KE reject use of v=0 for this MP v² = 26000 accept 25506, 25480 reject v² = 2600 if no a=10 seen. ignore sign	4
	correct answer = 160 (m/s) e.g. $v^2 = u^2 + 2aS$ $v^2 = 0^2 + (2 \times 10 \times 1300)$ $v^2 = 26000$ v = 161.245 (m/s)	accept 159.7059,159.62	
(b) (i)	any THREE from: MP1. reference to weight and air resistance; MP2. air resistance larger than weight (when parachute opens); MP3. reference to 'F = ma'; MP4. acceleration is upwards;	ignore 'upthrust' accept drag for AR accept 'resultant or unbalanced force is upwards ' allow idea of increased AR ignore 'decelerates' or 'slows down'	3
(ii)	MP5. air resistance decreases as parachutist slows down; any THREE from:		3
	MP1. GPE reduces as height above ground reduces; MP2. KE reduces as speed reduces; MP3. friction force does mechanical work on parachutist; MP4. thermal store of parachutist increases; MP5. thermal transfer between (warm) parachutist and (cold) air; MP6. thermal transfer happens by conduction or	accept 'works mechanically' accept 'energy lost to the surroundings' accept idea of conversion to heat energy via friction	

Q10.

Question number	Answer	Notes	Marks
(a)	any five from: MP1. chemical energy (store of student); MP2. transferred mechanically; MP3. (to) gravitational energy (store of marble); MP4. transferred mechanically; MP5. (to) kinetic energy (store of marble); MP6. idea that thermal energy (store of marble) increases; MP7. idea that thermal energy (store) of marble run / surroundings increases; MP8. energy transferred to surroundings by radiation;	allow idea this is due to a lift force exerted by student must be a clear second reference allow idea this is due to marble's weight allow heat for thermal allow heat for thermal allow transferred/lost as sound	5
(b) (i)	let marble roll across table for a known distance; measure time taken; use speed = distance / time;	allow measure distance travelled across table reject if linked to measuring time between A and B	3
	oR use of light gate; connected to datalogger; positioned so that (centre of) marble cuts beam(s);	allow use of device with two integrated light gates	
(ii)	substitution into GPE formula; evaluation of GPE; substitution into KE formula; evaluation of KE; subtraction to find energy lost;	ignore units allow use of $g = 9.8$, 9.81 only penalise not converting g to kg once ignore units only penalise not converting g to kg once allow ecf from incorrect GPE and/or KE 10, 10.0, 9.96, 9.7 (J) etc. scores 4 marks	5
	e.g. GPE = 0.0055 × 10 × 0.21 GPE = 0.01155 (J) KE = 0.5 × 0.0055 × 0.76 ² KE = 0.0015884 (J) energy lost = (0.01155 - 0.0015884 =) 0.010 (J)	allow 0.0113 allow 0.00996, 0.0097 (J)	

Q11.

bstitution; arrangement; valuation; g. 6 = 22-14 / t = 22-14 / 1.6 =) 5.0 (s) nbalanced) force = mass × acceleration;	allow standard symbols and rearrangements e.g. a = v-u / t allow Δv reject a = v / t allow standard symbols and rearrangements e.g. F = m × a	3
arrangement; valuation; g. 6 = 22-14 / t = 22-14 / 1.6 =) 5.0 (s)	allow standard symbols and rearrangements	
6 = 22-14 / t = 22-14 / 1.6 =) 5.0 (s)	allow standard symbols and rearrangements	1
=) 5.0 (s)	allow standard symbols and rearrangements	1
nbalanced) force = mass × acceleration;	and rearrangements	1
	e.g. r = m × a	
bstitution;		3
raluation; raluation correctly rounded to 2s.f.;	mark independently	
e.g. F = 1200 × 1.6 (F =) 1920 (N) (F =) 1900 (N)		
ea that the car slows down;	allow idea that car becomes stationary ignore "motion decreases"	2
e	aluation correctly rounded to 2s.f.; 1. 1200 × 1.6 =) 1920 (N) =) 1900 (N)	aluation correctly rounded to 2s.f.; mark independently 1.00 × 1.6 1.1200 × 1.6 1.