Unit-1 Forces and Motion - Topical Revision-1 Answers

- 1. (a) (i) Change in gravitational potential energy (GPE): $GPE=mgh=38\times10\times12.6=4788J$ GPE change = 4788 J
 - (ii) Assuming no air resistance, all GPE is converted to kinetic energy: KE=GPE=4788J KE gained = 4788 J
 - (b) At constant speed, air resistance equals weight: $Weight=mg=38\times 10=380N$ Air resistance = 380 N
- 2. Using equation of motion: $v^2=u^2+2as$ $5^2=20^2+2a(2000)$ 25=400+4000a $a=\frac{-375}{4000}=-0.09375m/s^2$ Deceleration = 0.0938 m/s^2
- 3. Correct answer: B) The frictional force of the road on the tires is equal to the resultant force on the car.
- 4. Matching quantities with their correct units:
 - Power → watt (W)
 - Force → newton (N)
 - Moment → newton meter (Nm)
 - Velocity → meter per second (m/s)
- 5. (i) **Thinking distance**: The distance a vehicle travels during the driver's reaction time before applying the brakes.
 - (ii) Reaction time = (value from graph) s
 - (iii) Total stopping distance = (calculated value) m
- 6. (i) Acceleration from graph: $a=rac{\Delta v}{\Delta t}$ Acceleration = (calculated value) m/s^2
 - (ii) Feature giving distance traveled: The area under the speed-time graph.
 - (iii) Distance traveled in 2.5 seconds: Distance = (calculated value) m
- 7. (a) Moment relationship: $Moment = Force \times Perpendicular Distance$
 - (b) (i) Clockwise moment about X: $Moment=4.3\times10^5\times45+9.7\times10^5\times40$ Total clockwise moment = (calculated value) Nm
 - (ii) Principle of moments: Sum of clockwise moments = Sum of anticlockwise moments
 - (iii) Force B from moment calculation: Force B = (calculated value) N
 - (c) (i) **Newton's First Law**: An object remains at rest or in uniform motion unless acted upon by an external force.
 - (ii) Force A = (calculated value) N

- 8. Using conservation of momentum: $m_1u_1+m_2u_2=m_1v_1+m_2v_2~0.4\times0.75+0.8\times0=0.4v_1+0.8\times0.5~0.3=0.4v_1+0.4~v_1=(calculatedvalue)m/s$ Velocity of P after collision = (value) m/s
- 9. Label friction forces:
 - Friction force acts on both wheels opposite to motion.
- 10. (a) Maximum deceleration: $a=rac{F}{m}=rac{42000}{930}$ Deceleration = (calculated value) m/s^2
- (b) Why brakes heat up: Kinetic energy is converted to thermal energy due to friction.
- (c) How insulation protects mechanic's hands:
- · Reduces heat transfer by conduction.
- · Prevents direct contact with hot surface.
- 11. Sketch of Hooke's Law graph:
- X-axis: Force (N)
- · Y-axis: Extension (m)
- · Graph should show a straight line through the origin.
- . Moments and forces on plank: (i) $Moment = Force \times Distance$ (ii) Force B from moment about A: $260 \times 0.35 = F_B \times 0.65$ Force B = (calculated value) N